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a b s t r a c t

We present a numerical method for the dynamics of a flexible body in an inviscid flow with
a free vortex sheet. The formulation is implicit with respect to body variables and explicit
with respect to the free vortex sheet. We apply the method to a flexible foil driven period-
ically in a steady stream. We give numerical evidence that the method is stable and accu-
rate for a relatively small computational cost. A continuous form of the vortex sheet
regularization permits continuity of the flow across the body’s trailing edge. Nonlinear
behavior arises gradually with respect to driving amplitude, and is attributed to the roll-
ing-up of the vortex sheet. Flow quantities move across the body in traveling waves, and
show large gradients at the body edges. We find that in the small-amplitude regime, the
phase difference between heaving and pitching which maximizes trailing edge deflection
also maximizes power output; the phase difference which minimizes trailing edge deflec-
tion maximizes efficiency.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

Computing the large-amplitude motions of flexible bodies in fluids is challenging when the Reynolds number (or inverse
viscosity) is large. Resolving the flow accurately requires solving for the position and motion of thin layers of vorticity, which
can display highly complex dynamics in even the simplest situations. A fundamental source of complexity is the Kelvin–
Helmholtz instability, which leads initially flat layers of vorticity to roll up into spirals [1]. The instability growth rate is max-
imal at large wave numbers, leading to fast growth in the spatial complexity of thin vortex layers [2].

When the motion of the solid boundary is coupled to the fluid dynamics, an additional challenge arises. The boundary
conditions for the fluid solver are now to be imposed on a boundary with location unknown a priori. The motion of the body
and the flow can only be determined together as a coupled system.

The immersed boundary method has been applied to a wide range of problems in this class [3]. The method’s generality
makes it suitable for a number of problems. The method uses an Eulerian grid in the fluid, a Lagrangian grid on the body, and
an interpolation scheme to communicate forces between the two. At large Reynolds numbers, very fine grids are required to
resolve vorticity. Furthermore, in standard formulations convergence is formally second-order in space, though practically
first-order convergence often occurs [4,5].
. All rights reserved.
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A different fluid model considers the infinite Reynolds number limit, in which case the flow is inviscid and irrotational,
apart from the vortex layers, which tend to sheets of infinitesimal thickness. Computing the dynamics of isolated vortex
sheets in free space began in the 1930s [6], but some of the most fundamental issues in such calculations have been resolved
only in the last twenty years [2,7]. These calculations and earlier efforts [8,9] showed that the Birkhoff–Rott equation for the
dynamics of a vortex sheet is ill-posed, giving rise to a singularity in the sheet curvature at finite time. Consequently many
workers have studied regularized versions of the Birkhoff–Rott equation to obtain smooth problems [10]. Such regulariza-
tions have also been used to suppress numerical instabilities [2].

Despite the challenges inherent in the computation of vortex sheets, they are efficient representations of thin shear layers
in high Reynolds number flows. They are surfaces in the flow, and hence reduce the dimensionality of the problem by one
relative to bulk fluid solvers, which must distribute many grid points across the shear layer.

How vortex sheets are produced at solid surfaces is another challenge which has been addressed recently [11,12], by
reformulating the Kutta condition, well-known in classical airfoil theory [13]. These models apply to flows past sharp-edged
bodies, which fixes the edge as the location at which the vortex sheet separates from the body. The rate of vorticity flux from
the body edge into the sheet is set to make finite the flow velocity at the body edge. Mathematically, this condition removes
the singularity which arises generically in potential flow past a sharp-edged body.

Very recently, workers have begun to apply such models to the motions of deforming bodies with prescribed motions
[14]. When the body is a flat plate, many of the equations can be formulated analytically. For deforming bodies in prescribed
motion, a more general formulation of the equations coupling the body to the flow is required. An additional level of com-
plexity arises when the motion of the deformable body is not prescribed in advance, but is instead coupled to the flow. This is
the topic we address here. Because the motion of the body and the strength of vorticity it sheds into the flow are coupled,
each can reinforce the other to create a numerical instability unless a special stabilizing approach is found. Here we describe
a stable method for such problems, which was recently used to study the large-amplitude dynamics of the flapping-flag
instability [15]. The present work examines the numerical method, which was not described in [15]. The present work also
gives results in the context of a different problem of scientific interest – the production of vorticity by a passive flexible fin,
immersed in an oncoming flow, and driven at the leading edge by a pitching and heaving motion. The linearized version of
this problem was studied theoretically in [16], which described some of the basic physics of the generation of thrust forces.
Principal among the results was the appearance of an optimal flexibility for thrust, which occurs at the first of a series of
resonant-like peaks, each corresponding to an additional half-wavelength of deformation on the fin. In the linearized model,
the vortex sheet is a semi-infinite line extending downstream of the fin, and the strength of vorticity on the sheet is simply a
travelling wave.

In the general (large-amplitude) version of the problem considered here, the dynamics of the vortex sheet show instead
the rolling-up behavior due to the Kelvin–Helmholtz instability. As in the flapping-flag case, the computation is made some-
what easier by the presence of a background flow. The background flow is by no means necessary, but allows for less expen-
sive long-time simulations by moving the vortex sheet steadily away from the body, where the sheet can be approximated
by point vortices.

The goal of this work is to describe and present results for a stable and efficient method for coupled vortex sheet-flexible
body dynamics, in a fundamental biolocomotion problem. The paper is organized as follows. In Section 2, we present the
complete equations for the coupled initial-boundary-value problem consisting of a 2D inviscid flow past a 1D elastic body
with a vortex sheet produced at the body’s trailing edge. In Section 3 we present the numerical method for this problem,
which combines an implicit formulation on the body with an explicit formulation on the free sheet. We also present results
on the behavior of the scheme with respect to numerical parameters. In Section 4, we present results with respect to physical
parameters. Section 5 summarizes the main results.

2. Flexible body vortex sheet model

We model the tail fin of a swimming fish as a slender elastic filament in a two-dimensional inviscid flow (see Fig. 1). The
model fin is an inextensible elastic sheet of length 2L, mass per unit length qs, and uniform rigidity B, moving under the pres-
sure forces of a surrounding inviscid and incompressible fluid of density (mass per unit area) qf . The fin position is fðs; tÞ,
where s is arclength; �L 6 s 6 L. The fin position evolves according to Newton’s 2nd law as a geometrically-nonlinear elas-
tica with inertia [17]:
qs@ttfðs; tÞ ¼ @sðTðs; tÞŝÞ � B@sð@sjðs; tÞn̂Þ � ½p�ðs; tÞn̂: ð1Þ
Here Tðs; tÞ is a tension force which maintains inextensibility, jðs; tÞ is the fin curvature, and ½p�ðs; tÞ is the pressure jump
across the fin. We have assumed for simplicity that the rigidity B is uniform, and defer a consideration of the spatial distri-
bution of B to future work.

For simplicity we shall represent 2D quantities as complex numbers, so that fðs; tÞ ¼ xðs; tÞ þ iyðs; tÞ is the fin position.
Here ŝ and n̂ are complex numbers representing the unit tangent and normal vectors to the fin, respectively. Therefore
we have ŝ ¼ @sf ¼ eihðs;tÞ, where hðs; tÞ is the local tangent angle, and n̂ ¼ ieihðs;tÞ. We shall make extensive use of the following
identity between the scalar product of two real vectors ða; bÞ and ðc; dÞ and the product of the complex numbers w1 ¼ aþ ib
and w2 ¼ c þ id : ða; bÞ � ðc; dÞ ¼ Reðw1 �w2Þ, where the bar denotes the complex conjugate.
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Fig. 1. A schematic of a flexible fin of length 2L pitching at the leading edge with amplitude h0 in a steady background flow of speed U. A vortex sheet
(dashed line) emanates from the trailing edge.
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We assume that the fin is immersed in a background flow with uniform velocity U in the far field. The leading edge
boundary condition for Eq. (1) is a sinusoidal pitching motion (as if driven by muscles in a fictitious body upstream) with
angular frequency x:
fðs ¼ �L; tÞ ¼ �L; hðs ¼ �L; tÞ ¼ h0 cosðxtÞ: ð2Þ
The kinematics of a tail fin or bird wing are more accurately modelled by including heaving as well as pitching [18]. Our main
interest here is on the thrust as a function of flexibility. We find the optimal rigidity for pitching to be similar to that for
pitching plus heaving, because in both cases the bending rigidity is the key parameter which governs how the leading edge
motion is transmitted to subsequent sections of the body against fluid resistance. However, in Section 4.1 we shall consider
combined heaving and pitching.

Free-end boundary conditions, T ¼ j ¼ @sj ¼ 0, are assumed at the trailing edge ðs ¼ LÞ. Scaling lengths on L, time on
2p=x, and mass on qf L2, the dimensionless fin equation becomes:
R1@ttf ¼ @sðTŝÞ � R2@sð@sjn̂Þ � ½p�n̂ ð3Þ
with dimensionless boundary conditions
fð�1; tÞ ¼ �1; hð�1; tÞ ¼ h0 cosð2ptÞ; ð4Þ
Tð1; tÞ ¼ jð1; tÞ ¼ @sjð1; tÞ ¼ 0: ð5Þ
The dimensionless parameters are:

(1) R1 ¼ qs=qf L, the dimensionless fin mass.
(2) R2 ¼ B

qf L5
2p
x

� �2, the dimensionless fin rigidity.
(3) h0 = the dimensionless pitching amplitude.
(4) X ¼ xL=U, the reduced pitching frequency.

The tension is eliminated from Eq. (3) by integration of the ŝ-component from s ¼ 1, using the boundary condition
Tð1; tÞ ¼ 0:
Tðs; tÞ ¼
Z s

1
ðR1Reð@ttf�̂sÞ � R2j@sjÞds0: ð6Þ
The tail fin is coupled to the flow through the pressure jump in Eq. (3). The flow is modelled as a 2D inviscid flow, with vor-
ticity in the form of a jump in tangential velocity c along a continuous curvilinear arc. The arc consists of a ‘‘bound” vortex
sheet on the fin, which separates from the trailing edge into a ‘‘free” vortex sheet in the flow (see Fig. 1). This flow model
dates to the early days of airfoil theory [13], agrees well with experiments [19,20], and has been used more recently by
[21,12,22]. The bound vortex sheet is a model for the two boundary layers on either side of the slender body. In the limit
of infinite Reynolds number, the two boundary layers are vortex sheets. In the limit of zero body thickness, the two vortex
sheets merge into a single bound vortex sheet.

The complex conjugate of the flow velocity ðux;uyÞ at any point z in the flow can be calculated in terms of the vortex sheet
strength c by integrating the vorticity in the bound and free sheets against the Biot–Savart kernel [10]:
uxðzÞ � iuyðzÞ ¼
2p
X
þ 1

2pi

Z
CbþCf

cðs0; tÞ
z� fðs0; tÞ ds0: ð7Þ
The first term on the right, 2p=X, is the dimensionless flow velocity at infinity, according the nondimensionalization used in
Eq. (3). Here Cb is the contour representing the fin ð�1 6 s0 6 1Þ and Cf is the contour representing the free sheet
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ð1 6 s0 6 smaxÞ. We can express the average w of the flow velocities on the two sides of any point fðs; tÞ on Cb or Cf by taking
the average of the limits of Eq. (7) as z approaches fðs; tÞ from above and below the contours:
�wðs; tÞ ¼ 2p
X
þ 1

2pi
cðs0; tÞ

fðs; tÞ � fðs0; tÞ ds0 þ bðs; tÞ; ð8Þ

bðs; tÞ ¼ 1
2pi

cðs0; tÞ
fðs; tÞ � fðs0; tÞds0: ð9Þ
In Eq. (8), �w is the complex conjugate of w, and the integral is of principal-value type. We can rewrite bðs; tÞ in a more con-
venient Lagrangian form. The free vortex sheet consists of a line of fluid particles which are continually advected away from
the trailing end of the fin, for t P 0. Following [12], we define the circulation as the integral of c over the body and free sheet:
Cðs; tÞ ¼
Z s

smax

cðs0; tÞds0; �1 < s < smax: ð10Þ
We denote the total circulation in the free sheet by CþðtÞ ¼
R 1

smax
cds0. According to the Helmholtz laws for vorticity conser-

vation in two-dimensional flows, specialized to a vortex sheet, Cðs; tÞ is conserved on fluid particles ([10], p. 30):
d
dt

Cðs; tÞ ¼ 0; s 2 Cf : ð11Þ
Here the time derivative is a material derivative, the rate of change following a fluid particle, which moves according to Eq.
(13). Thus each fluid particle in Cf carries the value of circulation Cðs; tÞ ¼ Cð1; t�Þ it has at the time t� when it is ‘‘born” at the
trailing edge of the fin. We can label material points by C, and reparametrize bðs; tÞ in Eq. (9) by circulation C using cds ¼ dC:
bðs; tÞ ¼ � 1
2pi

dC0

fðs; tÞ � fðC0; tÞ
: ð12Þ
On the free vortex sheet Cf , it can be shown that material points fðC; tÞmove with velocity w ([10], p.31). This gives the Birk-
hoff–Rott equation for the evolution of the free vortex sheet:
@�f
@t
ðC; tÞ ¼ 2p

X
þ 1

2pi
cðs0; tÞ

fðs; tÞ � fðs0; tÞds0 þ 1
2pi

dC0

fðC; tÞ � fðC0; tÞ
; fðC; tÞ 2 Cf : ð13Þ
Using C to label points on the free sheet eliminates the need for a separate evolution equation for cðs; tÞ on the free sheet in
Eq. (9). This is the main purpose of using the Lagrangian description of the free sheet here.

We apply Eq. (8) also to fðs; tÞ on the fin, to express the kinematic condition that fluid does not penetrate the fin on either
side. In other words, the component of the fin velocity normal to the fin equals the same component of w:
Reðn̂@t
�fðs; tÞÞ ¼ Reðn̂ �wðs; tÞÞ; fðs; tÞ 2 Cb: ð14Þ

Reðn̂@t
�fðs; tÞÞ ¼ Re n̂

2p
X
þ 1

2pi
cðs0; tÞds0

fðsÞ � fðs0Þ þ bðs; tÞ
 ! !

; fðs; tÞ 2 Cb: ð15Þ
When the left hand side of Eq. (15) and bðs; tÞ are known, the general solution cðs; tÞ has inverse-square-root singularities at
s ¼ �1 [23]. If we define vðs; tÞ, the bounded part of cðs; tÞ, by
cðs; tÞ ¼ vðs; tÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s2
p ; ð16Þ
the kinematic condition becomes:
Reðn̂@t
�fðs; tÞÞ ¼ Re n̂

2p
X
þ 1

2pi
vðs0; tÞds0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� s02
p

ðfðsÞ � fðs0ÞÞ

 !
þ bðs; tÞ

 !
; fðs; tÞ 2 Cb: ð17Þ
A complication arises in using Eq. (13) to solve for the dynamics of a free vortex sheet numerically. The equation is ill-posed,
which causes numerical errors to increase rapidly in simulations [7]. Krasny and others showed that the ill-posedness can be
removed by modifying the singular kernel in Eq. (13) using a smoothing parameter d [2]. The d-smoothed versions of Eqs.
(13) and (17) are:
@t
�fðs; tÞ ¼ 2p

X
þ 1

2pi
cðs0; tÞds0

fðs; tÞ � fðs0; tÞ þ bdðs; tÞ; fðs; tÞ 2 Cf ; ð18Þ

Reðn̂@t
�fðs; tÞÞ ¼ Re n̂

2p
X
þ 1

2pi
vðs0; tÞds0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� s02
p

ðfðsÞ � fðs0ÞÞ

 !
þ bdðs; tÞ

 !
; fðs; tÞ 2 Cb: ð19Þ
respectively, where
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bdðs; tÞ ¼ �
1

2pi
dK0

fðs; tÞ � fðK0; tÞ
jfðs; tÞ � fðK0; tÞj2 þ d2

: ð20Þ
The instantaneous total circulation in the free sheet, CþðtÞ, is determined by the Kutta condition, which states that at each
time t the fluid velocity at the trailing edge s ¼ 1 is finite. In particular, c, which is also the tangential component of the jump
in fluid velocity across the fin, must be finite at the trailing edge. Using Eq. (16), the Kutta condition becomes:
vð1; tÞ ¼ 0: ð21Þ
At each time t, Eq. (21) is a constraint which we use to determine CþðtÞ, as described below in Eq. (38). We also impose the
conservation of circulation in the flow (Kelvin’s Theorem) as described below in Eq. (37). This condition equates CþðtÞ to the
integral of c on the body for a flow started from rest, which we shall consider here.

One can relate the pressure jump across the fin ½p� to the vortex sheet strength along the fin by a version of the unsteady
Bernoulli equation. One writes the Euler equations for fluid velocities at points above and below the fin, and takes the limit
that the points approach each other from opposite sides of the fin (see [10,12]). The difference of these equations is an evo-
lution equation for the difference of the fluid velocities, which is c ŝ (the normal component is zero by the no-penetration
condition on either side of the fin). The evolution equation for the vortex sheet strength c is [12]:
ct þ @sððl� sÞcÞ ¼ @s½p�: ð22Þ
where sðs; tÞ is the tangential component of the fin velocity and lðs; tÞ is the tangential component of the average fluid
velocity:
sðs; tÞ ¼ Reð@tfðs; tÞ �̂sÞ; lðs; tÞ ¼ Reðwðs; tÞ�̂sÞ: ð23Þ
The pressure jump across the free sheet is zero, which yields the boundary condition for Eq. (22),
½p�js¼1 ¼ 0: ð24Þ
We integrate Eq. (22) along Cb to determine ½p�ðs; tÞ on the fin, �1 < s < 1.
We present here the full system of unknowns and corresponding equations:
fðs; tÞ; s 2 Cb;�1 6 s 6 1 : Eq: ð3Þ;
vðs; tÞ; s 2 Cb : Eq: ð19Þ;
½p�ðs; tÞ; s 2 Cb : Eqs: ð22Þ and ð16Þ;
fðs; tÞ; s 2 Cf ;1 6 s 6 smax : Eq: ð18Þ;
Cðs; tÞ ¼ Cð1; t�Þ; s 2 Cf : Eq: ð21Þ:

ð25Þ
Because the fin is nearly aligned with the flow, we neglect separation upstream of the trailing edge – in particular, at the
leading edge – and allow the flow velocity and pressure to diverge as the inverse square-root of distance from the leading
edge. The divergent pressure creates a finite leading-edge suction on the body which is a reasonable model for the force in
the actual flow [10], and is a standard component of classical models for flows past slender airfoils [13].

We wish to solve the set of nonlinear singular integrodifferential Eqs. (25) for large-amplitude motions of flexible bodies
coupled to vortex sheets. For general boundary conditions, a numerical solution is required. A similar set of equations was
solved by Jones and Shelley, numerically, for a rigid flat plate undergoing a prescribed motion [12,24]. In those works it was
shown that the Kutta condition could be rewritten in terms of the circulation flux by integrating Eq. (22) over the free sheet.
A linearized version of the equations for an infinite body with no free sheet was used by Shelley et al. to compute normal
modes of a flapping-flag [25]. The large-amplitude version of that problem was recently treated with the method described
here [15].

The main quantities of physical interest to us and previous workers ([26–28]) are the instantaneous input power applied
to the fin Pin (the rate of work done per unit time at the leading edge), and the output power Pout . These are:
Pin ¼ �R2j
@h
@t

����
s¼�1

ð26Þ

Pout ¼
p2

4X
v2 cos h

����
s¼�1
þ 2p

X

Z 1

�1
½p� sin hds ð27Þ
The first term on the right hand side of Eq. (27) is a suction force due to the inverse-square-root flow singularity at the lead-
ing edge. This is the limit of the suction force on a leading edge of small but finite radius of curvature, in the limit that the
radius tends to zero (i.e. the body becomes sharp-edged) [10]. Eq. (26) is the rate of work done to create the pitching motion
and is equal to the moment applied at the leading edge�R2j times the angular velocity there. The output power is defined as
the rate of work done per unit time by thrust forces on the fin, which is the thrust force times the velocity of the fluid stream
2p=X. This form of Pout was used by [26] and many others in the ‘‘Froude efficiency.”

The main novelty in the model presented in this section is the combination of the elastica Eq. (3) for large-amplitude
deformations of a body with previously-studied equations for the dynamics of free vortex sheets. The combination of body
bending with vortex sheet dynamics requires a new numerical method which couples the flow and body dynamics.
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3. Numerical method

Here we give our numerical method for the solution of the system of nonlinear singular integrodifferential Eqs. (25). We
solve for the dynamics of the fin at each time step, starting from an initial time t0 at which the fin is straight, at rest, and the
bound vortex sheet has zero strength. The free vortex sheet is initialized as a single point at the trailing edge of the fin, with
zero circulation. Each subsequent time step t1; t2; . . ., consists of an explicit solution of Eq. (18) followed by an implicit solution
of the remaining four equations in system (25). An implicit solution of the Birkhoff–Rott equation (18) would be considerably
more expensive, because about Oð103Þ variables are needed to represent the free sheet, versus Oð101 � 102Þ for the body. The
main cost in the implicit portion of the scheme is the matrix-vector multiplications in Broyden’s method (explained below),
which require OðN2Þ flops where N is the number of variables. Making the vortex sheet portion of the method implicit would
thus increase the flop count per Broyden step by at least Oð102 � 104Þ. We would also expect the number of iterations to con-
vergence to increase because the condition number of the Jacobian matrix used in Broyden’s method would increase.

Because all variables in the implicit and explicit systems are coupled, we should not expect that making part of the sys-
tem implicit will necessarily improve the stability of the scheme. Our original intention in solving some of the equations
implicitly was to make the formulation simpler. Indeed, it is difficult to formulate a numerical method which is explicit
in time, because the highest (second) time derivatives of body position appear not only in the body inertia (left hand side
of Eq. (3)), but also in the pressure jump (½p� in Eq. (3)), through the term @tc (Eq. (22)), and Eq. (15) which relates c to body
velocity through an integral transform. The implicit treatment we use here uses an iterative method, which requires only
matrix-vector multiplications rather than the direct solution of a linear system of equations. However, many possible formu-
lations were found to lead to numerical instability. The coupling between the body and the flow – the fact that larger body
motions lead to larger fluid forces and vice versa – seems to underlie many of the instabilities. These are characterized by an
exponential growth in variables with respect to time step, and do not seem related to any physical instability. Furthermore,
the convergence of the implicit solver for the equations FðxÞ ¼ 0 depends strongly on the conditioning of the Jacobian matrix
(the matrix with entry ði; jÞ equal to f@xj

Fig). Some formulations lead to a Jacobian matrix with large condition number.
Through a series of educated guesses we have found a partitioning of the equations into explicit and implicit form which
is numerically stable and has a well-conditioned Jacobian matrix. This is the scheme we describe now. Future work will con-
sider more systematically why some schemes are stable and some are unstable for this problem.

Numerical method:

(1) Given at time t0: position fðs; t0Þ and velocity @tfðs; t0Þ of body, initial bound vortex sheet strength
fcðs; t0Þ;�1 < s < 1g, and position of free sheet labelled by circulation fðC; t0Þ.
(We assume in the examples here flow starting from rest, so that @tfðs; t0Þ and cðs; t0Þ are zero. The free sheet is a point
coinciding with the trailing edge (it has zero length and zero circulation).

(2) For k ¼ 1;2; . . .
(a) Explicit method for the free vortex sheet (Section 3.1 below).
Given at time tk�1: position fðs; tk�1Þ and velocity @tfðs; tk�1Þ of body, bound vortex sheet strength
fcðs; tk�1Þ;�1 < s < 1g, and positions of free sheet points labelled by circulation fðC; tk�1Þ.
Output: New positions of free sheet points labelled by circulation fðC; tkÞ.

(b) Implicit method for the body variables (Section 3.2 below).
Given body variables at time tk�1 : fðs; tk�1Þ; @tfðs; tk�1Þ; fcðs; tk�1Þ;�1 < s < 1g, and position of free sheet labelled
by circulation at time tk, from step 2a: fðC; tkÞ. Also given: ‘‘clamp” boundary conditions for body leading edge
position at time tk: fðs ¼ �1; tkÞ; hðs ¼ �1; tkÞ. Free-end boundary conditions are assumed at the trailing edge:
jðs ¼ 1; tkÞ ¼ @sjðs ¼ 1; tkÞ ¼ 0.
Output: Body variables at time tk : fðs; tkÞ; @tfðs; tkÞ; fcðs; tkÞ;�1 6 s 6 1g.
In step 2b, the clamp boundary conditions are prescribed for the body leading edge. We modify Eq. (4) and the back-
ground flow to increase the smoothness of the startup. Specifically, we multiply h0 cosð2ptkÞ and the background flow
2p=X by a factor ð1� e�ð�tk=0:1Þ2 Þ, which ensures that the body is initially at rest, with vortex sheet strength zero on the body
and in the flow. The exponential factor ensures that the acceleration and its first time derivative are finite. The body reaches a
quasi-periodic state rapidly (variables are periodic to within 1% by t ¼ 5 pitching periods). We now describe the explicit and
implicit methods of step 2 in detail.

3.1. Explicit method for the free vortex sheet

We first describe the explicit solution of Eq. (18). At time step tkþ1 the free sheet consists of kþ 1 points, one of which –
the newly-created point ff

kðtkþ1Þ – coincides with the body trailing edge fð1; tkþ1Þ. Here the superscript f is for ‘‘free” vortex
sheet. The remaining k points ðff

j ðtkþ1Þ; j ¼ 0; . . . ; k� 1Þ, created on the previous k time steps, extend into the flow. The newly-
created point is moved to its new position using the local velocity at time tk, by the Forward Euler method, and the remaining
k points are moved to their new positions using the local velocities at times tk and tk�1 using a second-order explicit Adams–
Bashforth method:



S. Alben / Journal of Computational Physics 228 (2009) 2587–2603 2593
ff
kðtkþ1Þ ¼ ff

kðtkÞ þ ðtkþ1 � tkÞ@tfðs; tÞjf¼ff
k
;t¼tk

ff
j ðtkþ1Þ ¼ ff

j ðtkÞ þ ðtkþ1 � tkÞ � ðC1@tfðs; tÞjf¼ff
j
;t¼tk
þ ð1� C1Þ@tfðs; tÞjf¼ff

j
;t¼tk�1

Þ; j ¼ 0; . . . ; k� 1

C1 ¼ ððtk þ tkþ1Þ=2� tk�1Þ=ðtk � tk�1Þ:

ð28Þ
The constant C1 makes the second equation accurate to second-order in time. Because the newly-created point at sk does not
exist at prior times, we do not have velocity or position information at prior times. Hence we use the simplest one-step
method, the first-order Euler method. Empirically we find that relative errors are Oð10�2Þ for time steps of Oð10�2Þ (in units
of pitching periods) – see Table 2. Because each point is evolved for one time step with the Forward Euler method and for the
remaining time steps with the second-order method, the global temporal accuracy is significantly better than if a first-order
scheme were used exclusively. A higher-order scheme is possible using higher-order Runge–Kutta methods, but we do not
pursue this here.

3.2. Implicit method for the body variables

Having updated the free sheet to its position at time tkþ1, we update the body position and bound vortex sheet strength to
their values at time tkþ1 using an implicit scheme. We use the familiar quasi-Newton method for solving a nonlinear system
of equations known as Broyden’s method [29]. We write our system of equations for the implicit solver only – (3), (19), (21),
and (22) – in the form
FðxÞ ¼ 0: ð29Þ
The unknowns x for this system are values of v (defined in Eq. (16)) and j on mþ 1 Chebyshev–Lobatto nodes in �1 < s < 1,
and the total circulation Cþ:
xj ¼ vðsj; tkþ1Þ; j ¼ 1; . . . ;mþ 1 ð30Þ
xjþmþ1 ¼ jðsj; tkþ1Þ; j ¼ 1; . . . ;mþ 1
x2mþ3 ¼ Cþðtkþ1Þ:
sj ¼ � cosðj� 1Þp=m; j ¼ 1; . . . ;mþ 1:
The values F in the corresponding 2mþ 3 nonlinear equations are computed as follows. We start by integrating the curvature
jðsj; tkþ1Þ twice to obtain the body position fðsj; tkþ1Þ, using the ‘‘clamp” boundary conditions (4). We then obtain ŝ, and n̂
using the discrete differentiation matrix of first-order on Chebyshev–Lobatto nodes, D1

s (see [30]). The matrix is dense,
but because the number of nodes mþ 1 is typically small ð� Oð102ÞÞ, multiplication by this matrix is computationally inex-
pensive. A uniform discretization would allow sparse differentiation matrices, but then we would need to interpolate from
data on a uniform mesh to data on a Chebyshev mesh, which increases the condition number of the Jacobian matrix @Fj=@xi,
slowing convergence.

Using f (the body position) at previous time steps we compute Reðn̂@t
�fðsj; tkþ1ÞÞ to second-order temporal accuracy.

We obtain bdðsj; tkþ1Þ by performing the integral over the free sheet in Eq. (20) by trapezoidal quadrature. We are
now in a position to compute v as the solution to the integral equation (19). This solution is accomplished in a few
stages.

We first split the kernel multiplying v in Eq. (19) into a singular Cauchy kernel plus a smooth part K , using the relation:
1
fðs; tÞ � fðs0; tÞ ¼

1
@sfðs; tÞ

1
s� s0

þ 1
@sfðs; tÞ

Kðs; s0; tÞ; s–s0 ð31Þ
By expanding fðs0; tÞ in a Taylor series about s0 ¼ s, we can evaluate K exactly at the singularity:
Kðs; s0; tÞ ¼ i
jðs; tÞ

2
; s ¼ s0 ð32Þ
so Eq. (19) becomes:
Reðn̂@t
�fðs; tÞÞ ¼ Re n̂

2p
X
þ 1

2pi
@sfðs; tÞ

vðs0; tÞds0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s02
p

ðs� s0Þ

 
þ 1

2pi

Z 1

�1
Kðs; s0; tÞvðs

0; tÞds0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s02
p þ bdðs; tÞ

 !
; fðs; tÞ 2 Cb: ð33Þ
Eq. (33) can be solved for v using a Chebyshev expansion. We define
f ðs; tÞ ¼ Re n̂ �bdðs; tÞ �
2p
X
þ @t

�fðs; tÞ � 1
2pi

Z 1

�1
Kðs; s0; tÞvðs

0; tÞds0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s02
p

� �� �
ð34Þ
and approximate f by a finite Chebyshev series, which converges rapidly for smooth functions [31]:
f ðs; tÞ ¼
Xn

k¼0

fkðtÞ cosðk/Þ; s ¼ cosð/Þ ð35Þ



The solution v is then [32]:
vðs; tÞ ¼ 2
Xn

k¼1

fkðtÞ sinð/Þ sinðk/Þ � f1ðtÞ � 2f 0ðtÞsþ CðtÞ: ð36Þ
The term CðtÞ is determined by the conservation of circulation (Kelvin’s Theorem) for a flow started from rest:
Z 1

�1

vðs; tÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s2
p dsþ CþðtÞ ¼ 0) CðtÞ ¼ CþðtÞ

p
: ð37Þ
Using Eqs. (36) and (37) we can write the Kutta condition (21) as:
�f1 � 2f 0 þ
Cþðtkþ1Þ

p
¼ 0: ð38Þ
Having computed each of the quantities in Eq.
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Here d tends to zero quadratically with distance from the body’s trailing edge. The scale over which d tends to zero is given
by �. In the simulations presented here � is set to 0.2. This value is chosen as a balance of two considerations. Larger � is
advantageous for moving the region of d-smoothing further away from the body’s trailing edge. Smaller � is advantageous
by limiting the growth of numerical errors in the sheet as it moves through the region of size � in which d is small (see [2,7]).

In Table 1 we present results for three different d0, and find that the maximum differences between quantities (the dif-
ferences between the quantities for d0 ¼ 0:2 and 0.05) are of the order of 1–4%. By contrast, with d uniform and equal to d0,
these differences range from 20% to 50%. Information on the convergence of vortex sheet dynamics with respect to d0 may be
found in [7].

3.4. Adaptive time-stepping

We employ adaptive time-stepping to enforce small relative changes in the solution between time steps. Second-order
backward differentiation formulae are used for all time derivatives in the implicit solver. The second-order Adams–Bashforth
method is used to advance the free sheet explicitly in time. At each time step we compute the relative difference between the
current solution xkþ1 and the initial guess of the current solution 2xk � xk�1, extrapolated at second order from the two pre-
vious time steps. If the relative difference exceeds a tolerance s (0.003 in the results below) we multiply the time step by
0.95, a decrease of 5%. If the relative difference is smaller than s=3, we multiply the time step by 1.05. In Table 2 we give
results with respect to s, and find that the relative difference between all quantities is less than 2% moving from average
time step 0.0109 to 0.0053.

3.5. Point vortex approximation

For computational efficiency, it is advantageous to focus resolution near the body. An approximation method which
we use in this work is to approximate the free vortex sheet by point vortices when it has moved sufficiently far from the
body. By dropping second and higher-order terms in the multipole expansion of the approximated sheet, this method
incurs an error which is Oðr�2Þ in the velocities induced at the body by the approximated sheet, where r is the distance
between the body and the approximated sheet. In practice, we approximate based on the arc length of the free sheet,
computed at regular time intervals. We convert the portion of the free sheet with arc length exceeding a constant Ls into
a point vortex located at the center of vorticity of the replaced portion. The strength of the point vortex is equal to the
total vorticity in the replaced portion. The number of point vortices grows in time, but much more slowly than the num-
ber of mesh points in the free sheet, since many mesh points are absorbed into a single vortex. When there are many
point vortices, clusters of point vortices can be replaced by a single point vortex at the center of vorticity of the cluster.
Essential to this approximation is a background flow, which ensures that, once created, point vortices are advected away
from the body.

The number of mesh points representing the free sheet remains bounded at long times, because as more points are intro-
duced at the trailing edge of the body, points at the downstream end of the sheet are absorbed into a point vortex. This sat-
uration in mesh points is usually reached after 3–5 pitching periods for the computations considered here.
Table 1
Maximum trailing edge deflection over periods 10 to 15 ðjyjmaxÞ, maximum shed circulation over periods 10 to 15 jCjmax, time-averaged input power, output
power, and efficiency g ¼ hPouti=hPini, versus the vortex sheet smoothing parameter d0. The other parameters are: R2 ¼ 100;X ¼ p; h0 ¼ 10 degrees,
Ls ¼ 12;m ¼ 40; s ¼ 0:003.

d0 jyjmax jCjmax hPini hPouti g

0.2 0.410 4.24 17.84 4.88 0.274
0.1 0.402 4.21 17.67 4.74 0.268
0.05 0.394 4.26 17.50 4.63 0.265

Table 2
Maximum trailing edge deflection over periods 10 to 15 ðjyjmaxÞ, maximum shed circulation over periods 10 to 15 jCjmax, time-averaged input power, output
power, and efficiency g, versus the relative error bound s. The other parameters are: R2 ¼ 100;X ¼ p; h0 ¼ 10 degrees, Ls ¼ 10;m ¼ 40; d0 ¼ 0:2.

s hDti jyjmax jCjmax hPini hPouti g

1 0.124 0.357 4.31 15.73 3.80 0.241
0.2 0.055 0.385 4.09 16.68 4.12 0.247
0.1 0.036 0.387 4.01 16.91 4.17 0.247
0.03 0.0204 0.388 4.13 17.15 4.36 0.253
0.01 0.0109 0.392 4.19 17.40 4.52 0.260
0.005 0.0070 0.394 4.24 17.47 4.59 0.263
0.003 0.0053 0.394 4.24 17.47 4.61 0.264



Table 3
Maximum trailing edge deflection over periods 10 to 15 ðjyjmaxÞ, maximum shed circulation over periods 10 to 15 jCjmax, time-averaged input power, output
power, and efficiency g, versus the length of the non-truncated portion of the vortex sheet Ls . The other parameters are: R2 ¼ 100;X ¼ p; h0 ¼ 10 degrees,
m ¼ 40; s ¼ 0:003; d0 ¼ 0:2.

Ls 8 10 12 15 20 30

r 2.13 2.29 2.76 3.22 3.78 4.71
jyjmax 0.394 0.393 0.394 0.394 0.394 0.394
jCjmax 4.28 4.24 4.31 4.24 4.24 4.26
hPini 17.47 17.57 17.52 17.47 17.48 17.52
hPouti 4.60 4.66 4.63 4.61 4.61 4.64
g 0.264 0.265 0.265 0.264 0.264 0.265

Table 4
Maximum trailing edge deflection over periods 10 to 15 ðjyjmaxÞ, maximum shed circulation over periods 10 to 15 jCjmax, time-averaged input power, output
power, and efficiency g, versus the number of Chebyshev modes m. The other parameters are: R2 ¼ 100;X ¼ p; h0 ¼ 10 degrees, Ls ¼ 10; s ¼ 0:003; d0 ¼ 0:2.

m jyjmax jCjmax hPini hPouti g

20 0.403 4.24 17.04 4.48 0.263
40 0.394 4.25 17.57 4.66 0.265
60 0.399 4.19 17.74 4.71 0.266
80 0.399 4.14 17.76 4.72 0.266
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For larger Ls, the minimum distance between the body and the truncated sheet, r, increases. Therefore, we expect the er-
ror in this approximation to decrease as Ls increases. In Table 3, we give results with respect to Ls and r, and find little var-
iation even when the point vortices are as little as one body length from the trailing edge. The relative insensitivity of forces
with respect to Ls indicates that the vorticity production is dominated by the flow near the body, particularly at the trailing
edge. We find that r increases slowly with Ls. The reason is that the vortex sheet continually rolls up in time, so that the mar-
ginal increase in Ls required to resolve the far wake increases moving away from the body.

3.6. Convergence with respect to number of Chebyshev modes

Table 4 shows convergence with respect to m, the number of Chebyshev modes. We find 1–2% differences between quan-
tities at m ¼ 40 and m ¼ 80. Due to the square-root behavior of cðs; tÞ at the fiber’s trailing edge (see [12]), the Chebyshev
modes decay algebraically, not exponentially, with mode number.

4. Results with respect to physical parameters

We begin by considering the effect of all three physical parameters on the overall performance of the flexible foil: bending
rigidity ðR2Þ, pitching amplitude ðh0Þ, and pitching frequency ðXÞ. Period-averaged power-in and power-out are computed by
averaging over 10 periods, starting five pitching periods after t ¼ 0. By that time and subsequently, the flow is very nearly
periodic (all quantities in the tables are periodic to less than 0.5% in relative norm).

In Fig. 2, we give results for 3.5 decades in bending rigidity, four values of pitching amplitude, and two values of pitching
frequency (panels ‘a’ and ‘b’). First we examine variations in R2. We see two peaks in hPouti and hPini with respect to R2, the
highest located above 100, and a smaller peak located near 2. For R2 above the higher peak, power flattens out as the rigid
plate limit is approached. In Fig. 3 we show fiber positions and flows corresponding to these peaks. A linearized analysis [16]
has shown that these peaks are resonances, and occur at rigidities R2 which yield an eigensolution to the coupled system of
equations. That analysis shows that when X tends to infinity, there is an infinite series of peaks, one for each eigensolution,
which corresponds approximately to a series of sinusoidal solutions at each half-odd-integer wavelength of bending defor-
mation. At finite X, terms in the system of equations proportional to 1=X (advection forces) yield a damping of the resonant
peaks. Meanwhile, the efficiency ðg ¼ hPouti=hPiniÞ decreases from about 50% at small R2 to 20% at larger R2.

We now consider the behavior with respect to h0, the pitching amplitude. The behavior can be summarized as a multi-
plicative increase in the power curves with each factor of two increase in h0. At small R2, where response is small, power rises
by a factor of four, corresponding to the fact that the expressions for power in Eqs. (26) and (27) are proportional to h2

0 for
small h0. Near the maximum-power R2 (about 200), the input power rises somewhat more quickly with h0, showing the
emergence of nonlinear effects. A main source of nonlinearity is that the geometry of the vortex wake feeds back on the shed
vortex sheet strength. The efficiency is nearly constant with h0 for small R2, because the solution lies in the linear regime. At
larger R2, the efficiency decreases with increasing h0, because in the nonlinear regime, the input power rises more quickly
than does the output power. Finally, we consider the effect of X. The two peaks in power are damped in panel ‘b’ relative
to panel ‘a.’ Panel ‘b’ has smaller X, corresponding to a faster oncoming flow. At larger h0, the damping results in an increased
efficiency by moving closer to the small-amplitude (linear) regime.
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In Fig. 3 we show snapshots of foil positions and flows corresponding to the two resonant peaks of Fig. 2(a). In both cases,
the vortex sheets roll up into the familiar von Karman vortex street. The higher-thrust case (panel ‘a’) has vortices which are
considerably larger and have more spiral turns. This is a result of the larger vorticity they have when leaving the trailing
edge. The snapshots indicate that the foil corresponding to the lower-thrust peak is a higher-wavelength mode.

We examine the transition from linear to nonlinear behavior in Fig. 4. We briefly set aside our discussion of flexibility
here, and focus on a nearly rigid plate ðR2 ¼ 104Þ. In the rigid limit we can examine how nonlinearity arises from the evo-
lution of the vortex sheet alone, without the additional effect of body deflection. Shown are the free vortex sheets for eight
different pitching amplitudes: ranging from one-half degree, well within the linear regime, to 18 degrees, where fully-sep-
arated flow can occur for steady airfoils. In certain cases oscillation can prevent fully-separated flow, and allow for useful lift
forces to be obtained beyond the stall angle (i.e. ‘‘delayed stall”) [33]. Thus we may expect our assumption that separation is
confined to the trailing edge to hold above the classical stall angle � 15 degrees for a slender airfoil in steady flow [1]. The
vortex sheet wake occupies an envelope which grows moving downstream from the body and with h0. Owing to the inverse-
distance dependence of velocity on a vorticity distribution, and the fact that vorticity of alternating sign is produced, the ef-
fect of alternating vortex pairs decays like the square of inverse-distance from the body. Thus the portion of the vortex sheet
nearest the trailing edge is dominant over the remainder of the sheet in affecting the flow on the body. This portion is nearly
flat at small h0, and the rolling-up which occurs downstream is a relatively weak source of nonlinearity. However, at the lar-
ger h0 in Fig. 4(g) and (h), the vortex sheet begins to roll up almost immediately upon being shed, and the feedback of this
stronger rolling-up on the vorticity being shed is a strengthened nonlinearity.



0 5 10 15 20
−2

0

2

0 2 4 6 8
−2

0

2

0 5 10 15 20
−2

0

2

0 2 4 6 8
−2

0

2

0 5 10 15
−2

0

2

0 2 4 6
−2

0

2

0 5 10
−2

0

2

0 2 4 6
−2

0

2

−2.5 −2 −1.5 −1 −0.5 0

−2

−1

0
0.2
0.4

1

2

log
10 θ0

η

log10 <Pout >

log10 <Pin>

a

b

c

d

e

f

g

h

i

Fig. 4. The vortex wakes past a rigid fiber ðR2 ¼ 104Þ for increasing values of the pitching amplitude h0: (a) 0.5 (b) 1 (c) 2 (d) 4 (e) 8 (f) 10 (g) 15 (h) 21
degrees. In each plot, a second black line shows the fiber at maximum amplitude. The time-averaged input and output power and efficiency for various h0

are shown in panel (i). The other parameters are: X ¼ p; d0 ¼ 0:2, Ls ¼ 40;m ¼ 40;s ¼ 0:003.

2598
In Fig. 4(i) we plot the dependence of time-averaged input power, output power, and their ratio, the ‘‘Froude efficiency” g,
on h0. As defined in Eqs. (26) and (27), both input and output power scale as h2

0 for small h0. This is seen in Fig. 4(i) for Pin up to
h0 � 10 and for Pout up to h0 � 20. The relatively delayed appearance of nonlinearity in Pout is surprising. We might expect
that because the input power is applied at the leading edge, it is therefore somewhat removed from the nonlinear feedback
of the shed sheet at the trailing edge. One possible cause of the nonlinearity in input power is the influence of the shed vortex
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sheet on the vertical momentum of the fluid upstream, against which the pitching motion works. However, we have no rea-
son to expect that the output power would be less strongly affected by nonlinearities in the flow at the trailing edge.

So far we have focused on the foil and the free vortex sheet. In Fig. 5 we plot the instantaneous streamlines for the flow
around a very rigid fiber (a, R2 ¼ 104) and a very flexible fiber (b, R2 ¼ 3� 10�4), in a reference frame where the fluid is at rest
at infinity. For the rigid fiber, we see a ribbon of streamlines which passes between the vortices as an undulating jet. The
extent of the influence of the vortex wake is visible in the streamlines outside of the vortex sheet wake. The vertical extent
of the eddies is approximately twice the width of the vortex sheet wake itself. For the more flexible fiber (b), the body and
wake are nearly indistinguishable in their effect on the streamlines. Both support a series of eddies with diameter approx-
imately one-half fiber length. Here the transition in flow from the trailing edge of the fiber to the wake is very smooth. The
effect of leading edge suction on the fiber is noticeable in the presence of an eddy there. In panel ‘c’ we show a contour plot of
flow speed for this case, which reveals a smaller-scale flow structure along the fiber, though not on the free vortex sheet. The
reason is that the fiber shape has a small high-wavelength component, due to the smallness of its bending rigidity. Because
this component is small, taking the limit that bending rigidity tends to zero yields essentially the same shape. The dominant
forces in setting the fiber shape are its inextensibility and the fluid forces. In particular, the fluid advection force appears to
damp out high-wavelength fiber shapes. By contrast, if we take the limit that advection speed U goes to zero (i.e. X!1), the
high-wavelength modes of fiber shape instead become dominant [16].

The small high-wavelength component becomes clearer when we examine the fluid pressure difference on the fiber itself.
This is shown in Fig. 6(a), together with the fiber shape and the component of fiber velocity normal to itself. We plot six snap-
shots at equal instants in time over one half cycle. We see that although the fiber shape is relatively smooth, the velocity and
pressure show high-frequency oscillations. These oscillations move forward along the fiber as a travelling wave. In the full
system of equations, the pressure is dependent on instantaneous fiber position, velocity and acceleration. While the position
and acceleration (not shown) are relatively smooth, the velocity has high-frequency components which arise in the pressure.
The behavior of flow quantities at the fiber endpoints is also interesting. In Fig. 6(b) we again plot six snapshots over a half
cycle, but for rigidity R2 ¼ 100, near the maximum thrust value. In place of the normal component of velocity we now plot
the (bound) vortex sheet strength on the fiber, c. At the leading edge, there is an inverse-square-root singularity in the pres-
sure and c. At the trailing edge, both have a square-root behavior. Unlike in earlier works on vortex-shedding, c is nonzero at
the trailing edge, and continuous with the vortex sheet strength on the free sheet. The pressure distribution falls steeply at
the trailing edge, particularly at instants of large trailing edge acceleration. However, the pressure jump changes gradually
on the interior of the body, and is nearly spatially uniform at the initial and final times.
Fig. 5. Instantaneous streamlines for the flow speed past (a) a rigid fiber ðR2 ¼ 104Þwith h0 ¼ 8 degrees. The streamlines (b) and flow speed contours (c) are
plotted for a very flexible fiber ðR2 ¼ 0:0003Þ with h0 ¼ 15 degrees. In both cases X ¼ p.
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 4.1. Combined heaving and pitching

We have so far concentrated on pitching motions alone. A more realistic set of dynamics includes also a periodic trans-
verse motion – ‘‘heaving” [18], again considered to be imposed at the leading edge. We assume the heaving has the same
frequency as the pitching, and thus change Eq. (4) to
fð�1; tÞ ¼ iy0 cosð2pt þ /Þ; hð�1; tÞ ¼ h0 cosð2ptÞ: ð44Þ
We have introduced two new parameters: the amplitude of heaving y0 and the phase shift with respect to pitching /. These
are added to the three-parameter space of R2; h0 and X already studied to yield a five-parameter space. For simplicity we
focus on small deflections from alignment with the free stream, so that h0 	 1; y0 	 1. In particular, we choose h0 equal
to 1/4 degree. The heave-to-pitch ratio y0=h0 is then varied together with the other three-parameters R2;X, and /.

We must also update Eq. (26) for the input power to include the work done by heaving, which equals the product of the
vertical force applied at the leading edge times the heaving velocity there. The vertical force is the vertical components of the
shear force applied to a beam R2@sj [34] and of the suction force from the fluid at the leading edge:
Pin ¼ �R2j
@h
@t

����
s¼�1
þ R2@sj

@y
@t

cos h

����
s¼�1
þ p2

4X
v2 sin h

����
s¼�1

: ð45Þ
Most experimental [35,28] and theoretical studies [36–38] have focused on the case of a rigid plate or foil. Phase angles near
/ ¼ 3p=2 (with heaving leading pitching) are commonly observed in carangiform (or tail-dominant) swimming and bird
flight [18]. Experiments on rigid foils have found / ¼ 1:6p is optimal for thrust within certain parameter regimes [28]. These
works are focused on large-amplitude motions and on thrust generation, whereas here we stay within the limit of small
deflections from the free stream, and consider efficiency as well as thrust.

In Fig. 7, we fix heaving-to-pitching amplitude ratio at 0.1 and plot contours of the phase /=p which maximizes average
output power hPouti, with respect to the two remaining unfixed parameters: reduced frequency X and rigidity R2. Due to the
expense of scanning a large portion of parameter space, the contours are based on data with a resolution of four points per
decade along each axis. This resolution is sufficient to capture the variation in phase. We find that the classical phase differ-
ence of 1:5p is favored at small frequencies (or large free stream velocities). At larger rigidities and small frequencies (to the
upper left of the dashed line), only drag is possible. As the driving frequency increases, the optimal phase for power output
shifts to 2p, so that pitching and heaving are in phase. We consider an example in this regime subsequently. First, we note
that the optimal phase depends only weakly on bending rigidity, which is somewhat surprising. Also interesting is that these
results are nearly identical for heave-to-pitch amplitudes ranging from 10�3 to 10, with deviation only between approxi-
mately 3 and 10. In the limit of large R2 (the rigid plate), the trajectory of the entire plate is known given only the phase
and the heave and pitch amplitudes. In this case, the phase / ¼ 2p has the property of maximizing the maximum trailing
edge deflection of the body over a cycle, which determines output power in linearized theories [26,39].

We now focus on a particular, though representative case: R2 ¼ 100 and X ¼ 11:2. The rigidity leads to a moderate flexing
of the body (Fig. 8(a)) superposed on the rigid plate motion. The reduced pitching frequency is approximately 4p, which
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means that the body completes one cycle of flapping in the time for the oncoming fluid to traverse the body streamwise. The
heave-to-pitch amplitude ratio is one. In Fig. 8(a) we show snapshots of the body over a cycle in the phase yielding optimal
thrust, / ¼ 0. This phase maximizes the displacement at the trailing edge, due to the outward flexing of the body. The result-
ing trajectory is similar to that of Fig. 3(a). Fig. 8(b) shows the same body at the phase / ¼ 0:95p giving maximum Froude
efficiency hPouti=hPini. This phase also corresponds to minimum thrust and minimum trailing edge displacement. High effi-
ciency arises for small thrust because relatively little energy is lost to the vortex sheet wake.

We now consider the phase for maximum efficiency over a large portion of parameter space, for the rigid plate only
ðR2 ¼ 104Þ. Having fixed rigidity, in Fig. 9(a), we plot the contours of /=p corresponding to maximum Froude efficiency
hPouti=hPini, as a function of the two remaining parameters: reduced frequency X and heave-to-pitch amplitude y0=h0. For
maximum g, we find that the classical stroke of 1:5p is favored only for small pitching frequencies (or large free stream
velocity). However, at these parameter values, the thrust force on the body is negative – i.e. drag – for all pitching
frequencies.

As X is increased, there is a smooth transition to phase 0:8p, when X � 2p; here the pitching period is of the order of the
time for fluid to pass streamwise along the body. When heaving amplitude becomes of the same order as pitching amplitude,
the contours change significantly so that phases between 0:5p and p – with pitching leading heaving – are favored at all
reduced frequencies. The resulting trajectories are similar to those of Fig. 8(b).

In Fig. 9(b), we plot the relative difference between the minimum and maximum efficiencies over all phases. When heav-
ing amplitude is small, the relative phase of heaving is relatively unimportant, so the differences are small. The large change
in the contours at smaller X occurs because positive thrust is no longer possible, so the maximum efficiency tends to zero at
the dashed line, and is negative in the region bounded by the dashed line.
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To summarize the results of this section, we have found that in the limit of small deflection from alignment with the fluid
stream, the phases for maximum thrust and maximum efficiency are often opposite or nearly opposite. Maximum thrust is
obtained when heaving combines with pitching to generate a larger trailing edge deflection. Maximum efficiency occurs
when the two nearly cancel in their effect on the trailing edge displacement.

5. Summary and conclusions

We have presented a new numerical method for computing the fully-coupled motions of flexible bodies and vortex
sheets. We have computed results for a problem relevant to biolocomotion – a pitching flexible foil in a uniform stream. This
problem has been studied previously in the linearized limit [16], which provides a context for some of the results with re-
spect to physical parameters. In addition to the full coupling of flexibility to vortex sheet motion, an important component of
this work is the incorporation of gradual increase of vortex sheet smoothing parameter d at the trailing edge. This avoids the
large errors at the trailing edge (Oð1Þ in the limit of small mesh spacing), including jump discontinuities in pressure and vor-
tex sheet strength, which occur otherwise. For parameters corresponding to maximum foil thrust, numerical evidence is pre-
sented which indicates accuracy with respect to numerical parameters. Both the mathematical analysis of the well-
posedness of the model and the numerical analysis of the stability of possible schemes for coupled flexible body vortex sheet
problems are left to future work.

We find that nonlinear behaviors of the input and output power arise gradually with respect to driving amplitude, and
may be attributed to the feedback between the rolling-up of the vortex sheet and the flow on the fiber which creates the
vortex sheet. Pressure and vortex sheet strength vary rapidly at the trailing edge of the body, which emphasizes the benefit
of a gradual onset of vortex sheet smoothing near the trailing edge. We have studied heaving combined with pitching in the
small-amplitude regime, with a focus on the phase differences which maximize power output and efficiency. We find that
the classical phase of heaving leading pitching is optimal for power output when the reduced pitching frequency is small (or
the fluid stream is fast). At higher pitching frequencies an in-phase response is favored, and maximizes trailing edge deflec-
tion. The opposite phase difference minimizes trailing edge deflection and maximizes efficiency.
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